Lab 2
The TA64 Architecture And Its Implementation

This Lab is based on the following documents: Introducing the IA-64 Ar-

chitecture, Itanium Processor Microarchitecture, and The Intel IA-64 Compiler
Code Generator. All of them can be found on the web page of the course.

1

Speculation

1. What are the 3 main features of the TA64 architecture for speculation?
Describe each of them and explain why they are useful to achieve high
performance. Note that such features may not explicitly be named ”spec-
ulation” - speculation occurs any time the processor executes instructions
which may not be necessary or useful to the program.

e Predication. Predication is a mechanism that allows any instruc-
tion to be executed speculatively and be graduated only if an associated
predicate is true. This mechanism is particularly useful to better ex-
ploit the available parallel functional unit. Moreover, one can avoid
simple if-then-else structures that traditionally involve the use of ex-
pensive branches. Using predication, both the if and else blocks can
be executed in parallel once the processor has computed the predicate
that tells which path to execute. Since the only instructions that will
graduate are the one with a predicate whose value is true, only in-
structions along the correct path will change the state of the processor;
the other ones (i.e. the ones that needn’t have been executed) will be
discarded. By speculatively executing blocks in parallel, one can avoid
branch instructions and avoid their high cost. This mechanism is also
used in software pipelining to minimise the overhead in term of code
size generally associated with this technique (see the next question
for details). Finally it allows more aggressive code scheduling tech-
nique and exposes more instruction level parallelism to the compiler
by allowing optimisations to work on larger blocks.

e Control speculation. This mechanism allows to speculatively move
a load instruction across basic block boundaries. It introduces a spe-
cial 1d.s instruction that perform the load but do not raise excep-
tions. A chk.s instruction is inserted by the compiler where the load
is not speculative anymore (i.e. at its ’original’ position). This in-
struction will branch to compiler-provided fix-up code if an exception
occurred during the load. Since loads are really time consuming and
often precede long calculation chains that depend on them, the earlier
the load can be scheduled (by the compiler) the less instructions might
wait because they depend on that load. Once more, this technique al-
lows aggressive code scheduling techniques.



e Data speculation. This mechanism is somewhat similar to control
specification. It allows the compiler to speculatively schedule a load
instruction before store instructions that may access the same mem-
ory cell. For this purpose, the compiler uses advanced load instruc-
tion (1d.a) and the corresponding check instruction (chk.a) that will
branch to fiz-up code if necessary because of some store instruction
modifying a loaded memory cell having been executed in between. As
the two other techniques, it enables more aggressive code scheduling.
Indeed a lots of programs use complex pointer-based data structures
for which it is difficult (or even impossible) to get precise alias anal-
ysis, resulting in conservative decisions at compile-time. Typically,
a load can hardly ever be moved before any stores at compile time
without data speculation support in hardware.

2. What is the specific hardware support needed in order to use these features
and that is implemented in Itanium?

For predication, 1-bit predicate registers are needed. Most instructions
can then be associated to a predicate register to know whether they should
graduate. Consequently, instruction format must include an (optional)
predicate register field.

To support control speculation, all general purpose registers have an extra
bit, called NaT. If an synchronous exception occurs due to the speculative
load, the NaT bit of the target register is set and the exception is discarded.
When the speculative check instruction is executed, it checks whether the
NaT bit of the given register is set and if it is the case, it branches to
fix-up code.

For data speculation, we need to keep track of the destination register, the
address and the size of every advanced load. For that purpose, an advanced
load address table (ALAT) is needed. When a 1d.a occurs, a new line is
added into the ALAT. When a store occurs and it accesses a position that
has been loaded in advance (i.e. whose address overlap an entry in the
ALAT), the corresponding line in the ALAT is erased. Finally, when a
chk.a occurs, the fiz-up code is executed if there are no corresponding lines
in the ALAT (because a store erased it).

Software Pipelining and Register Model

1. Describe the specific architectural support introduced in IA64 for software
pipelining. Explain why it makes software pipelining less expensive and
easier.

Dedicated instructions for loop semantics are added, such as br.ctop. To
support them, special registers for counting loop iterations (LC) and number
of stages in the pipeline (EC) are provided. Moreover predicates are used to
avoid duplicated code for the prologue and the epilogue. Finally, rotating
registers (GP and predicates) are provided to support renaming among
iterations: each rotation advances the pipeline by one stage.

2. Considering the following program, write the assembly code that an Ita-
nium compiler doing software pipelining would generate. Comment each



line. The Itanium instruction set can be found in Intel Itanium Architec-
ture Software Developer’s Manual Volume 3.

int x ptrl, xptr2, ;

ptrl = R1,;

ptr2 = R2;

for(i =0;i < 100; + + %)

{

*ptr2 = xptrl;

+ + ptrl;
+ + ptr2;
}
mov LC = 99 Initialise the loop counter
mov EC = 3 Initialise the epilogue counter
mov pr.rot = 1 << 16 Initialise the rotating predicate
registers
loop:

(p16) 1d4 R34 = [R1],4 Stage 1: load *ptrl
Nothing in stage 2 (p17) because
of the load latency (2 cycles)
(p18) st4 [R2] = R36,4 Stage 3: store to ptr2
br.ctop loop;; Redo the loop

Note that we (as Intel’s compiler does) have not used a rotating register
for the addresses.

. Suppose that the for loop is replaced by a while loop, for example while(xptrl! =
NULL). Explain what kind of changes your code would need.

In the case of a while loop, the LC register and the associated br.ctop
instruction cannot be used anymore because we cannot know at compile
time the number of iteration of the loop.

Consequently one should use the br .wtop instruction that allows to branch
only if a predicate has the value true. The result of the comparison of the
while statement must be put in a predicate register that will be used by
the br.wtop instruction. That predicate register must be a one of the
rotating predicate registers in order to be able to drain the loop when the
loop condition is not true anymore.

Moreover, the 1d should be made speculative because at the time the condi-
tion becomes false, we will have already executed the load in a next iteration
(since the test can only occur in late pipeline stages).

. Explain the register model for the programmer and the parameter passing
convention. Ilustrate the concept with the code which calls a C func-
tion objA foo(int a, int b, int c) where objA is a structure which
occupies 32 bytes. Details on the calling conventions for Itanium can
be found in the Itanium Software Conventions and Runtime Architecture
Guide. List advantages and disadvantages of this scheme in terms of (1)
programmer/compiler comfort, (2) microarchitectural complexity, and (3)
performance. Indicate with a simple diagram how the register addressing
scheme might be implemented.



Infinitely many registers are provided to the programmer through the stack
engine. Beside the first 32 registers, 96 registers are managed as a stack.
The register stack engine (RSE) saves registers to memory when not enough
free register are available. Each procedure can allocate up to 96 fresh reg-
isters through alloc instructions and deallocate them on procedure return.
The interest of such a model is that it results in procedure calls being
less expensive by avoiding systematic saving of registers on the (memory)
stack. It simplifies the task of the compiler because of the virtually infinite
number of registers. Finally, the RSE can be implemented so as to spec-
ulatively spill and fill registers in the background using unused memory
poTts.



	Speculation
	Software Pipelining and Register Model

